7p^2=-6p+3

Simple and best practice solution for 7p^2=-6p+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7p^2=-6p+3 equation:


Simplifying
7p2 = -6p + 3

Reorder the terms:
7p2 = 3 + -6p

Solving
7p2 = 3 + -6p

Solving for variable 'p'.

Reorder the terms:
-3 + 6p + 7p2 = 3 + -6p + -3 + 6p

Reorder the terms:
-3 + 6p + 7p2 = 3 + -3 + -6p + 6p

Combine like terms: 3 + -3 = 0
-3 + 6p + 7p2 = 0 + -6p + 6p
-3 + 6p + 7p2 = -6p + 6p

Combine like terms: -6p + 6p = 0
-3 + 6p + 7p2 = 0

Begin completing the square.  Divide all terms by
7 the coefficient of the squared term: 

Divide each side by '7'.
-0.4285714286 + 0.8571428571p + p2 = 0

Move the constant term to the right:

Add '0.4285714286' to each side of the equation.
-0.4285714286 + 0.8571428571p + 0.4285714286 + p2 = 0 + 0.4285714286

Reorder the terms:
-0.4285714286 + 0.4285714286 + 0.8571428571p + p2 = 0 + 0.4285714286

Combine like terms: -0.4285714286 + 0.4285714286 = 0.0000000000
0.0000000000 + 0.8571428571p + p2 = 0 + 0.4285714286
0.8571428571p + p2 = 0 + 0.4285714286

Combine like terms: 0 + 0.4285714286 = 0.4285714286
0.8571428571p + p2 = 0.4285714286

The p term is 0.8571428571p.  Take half its coefficient (0.4285714286).
Square it (0.1836734694) and add it to both sides.

Add '0.1836734694' to each side of the equation.
0.8571428571p + 0.1836734694 + p2 = 0.4285714286 + 0.1836734694

Reorder the terms:
0.1836734694 + 0.8571428571p + p2 = 0.4285714286 + 0.1836734694

Combine like terms: 0.4285714286 + 0.1836734694 = 0.612244898
0.1836734694 + 0.8571428571p + p2 = 0.612244898

Factor a perfect square on the left side:
(p + 0.4285714286)(p + 0.4285714286) = 0.612244898

Calculate the square root of the right side: 0.782460796

Break this problem into two subproblems by setting 
(p + 0.4285714286) equal to 0.782460796 and -0.782460796.

Subproblem 1

p + 0.4285714286 = 0.782460796 Simplifying p + 0.4285714286 = 0.782460796 Reorder the terms: 0.4285714286 + p = 0.782460796 Solving 0.4285714286 + p = 0.782460796 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-0.4285714286' to each side of the equation. 0.4285714286 + -0.4285714286 + p = 0.782460796 + -0.4285714286 Combine like terms: 0.4285714286 + -0.4285714286 = 0.0000000000 0.0000000000 + p = 0.782460796 + -0.4285714286 p = 0.782460796 + -0.4285714286 Combine like terms: 0.782460796 + -0.4285714286 = 0.3538893674 p = 0.3538893674 Simplifying p = 0.3538893674

Subproblem 2

p + 0.4285714286 = -0.782460796 Simplifying p + 0.4285714286 = -0.782460796 Reorder the terms: 0.4285714286 + p = -0.782460796 Solving 0.4285714286 + p = -0.782460796 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-0.4285714286' to each side of the equation. 0.4285714286 + -0.4285714286 + p = -0.782460796 + -0.4285714286 Combine like terms: 0.4285714286 + -0.4285714286 = 0.0000000000 0.0000000000 + p = -0.782460796 + -0.4285714286 p = -0.782460796 + -0.4285714286 Combine like terms: -0.782460796 + -0.4285714286 = -1.2110322246 p = -1.2110322246 Simplifying p = -1.2110322246

Solution

The solution to the problem is based on the solutions from the subproblems. p = {0.3538893674, -1.2110322246}

See similar equations:

| Y=-0.1(45)+1 | | 16a+8b= | | 2x^2-6x+9=340 | | Y=2+4.5x | | -3x^4+16x^3-27x^2=0 | | y=4.5x+2 | | Y=-22.5x-1 | | -c+11=2.4+x | | log(2x)+log(3x)=log(96) | | 9/5(191.8) | | 4y-20x=8 | | (3x-4z)(x-7z)= | | 108x+4=13+46x-2 | | 35=m^2-2m | | -2x^2+8x-7=0 | | (y-7)-y=6 | | 4(v-7)+2v=8 | | 23+3y-2=14y-14-4y | | (3/7)-(x/4)=1/28 | | x-(y-z+2)= | | (2x^2)+16x+22=0 | | 2(x+4)(3x+1)= | | 12+0.25=20.05 | | a+(-b-c)= | | 450-2X+X^2=0 | | 2(x+4)(3x+1)=0 | | 2x^2-8x-120= | | 108x+4=59x-2 | | (2t-4)/(t^2-4) | | 4x-5(4)=20 | | 6x+2=122 | | X^2-30x+207=0 |

Equations solver categories